Diffusion-based spatial priors for imaging
نویسندگان
چکیده
We describe a Bayesian scheme to analyze images, which uses spatial priors encoded by a diffusion kernel, based on a weighted graph Laplacian. This provides a general framework to formulate a spatial model, whose parameters can be optimized. The application we have in mind is a spatiotemporal model for imaging data. We illustrate the method on a random effects analysis of fMRI contrast images from multiple subjects; this simplifies exposition of the model and enables a clear description of its salient features. Typically, imaging data are smoothed using a fixed Gaussian kernel as a pre-processing step before applying a mass-univariate statistical model (e.g., a general linear model) to provide images of parameter estimates. An alternative is to include smoothness in a multivariate statistical model (Penny, W.D., Trujillo-Barreto, N.J., Friston, K.J., 2005. Bayesian fMRI time series analysis with spatial priors. Neuroimage 24, 350-362). The advantage of the latter is that each parameter field is smoothed automatically, according to a measure of uncertainty, given the data. In this work, we investigate the use of diffusion kernels to encode spatial correlations among parameter estimates. Nonlinear diffusion has a long history in image processing; in particular, flows that depend on local image geometry (Romeny, B.M.T., 1994. Geometry-driven Diffusion in Computer Vision. Kluwer Academic Publishers) can be used as adaptive filters. This can furnish a non-stationary smoothing process that preserves features, which would otherwise be lost with a fixed Gaussian kernel. We describe a Bayesian framework that incorporates non-stationary, adaptive smoothing into a generative model to extract spatial features in parameter estimates. Critically, this means adaptive smoothing becomes an integral part of estimation and inference. We illustrate the method using synthetic and real fMRI data.
منابع مشابه
Diffusion-based spatial priors for functional magnetic resonance images
We recently outlined a Bayesian scheme for analyzing fMRI data using diffusion-based spatial priors [Harrison, L.M., Penny, W., Ashburner, J., Trujillo-Barreto, N., Friston, K.J., 2007. Diffusion-based spatial priors for imaging. NeuroImage 38, 677-695]. The current paper continues this theme, applying it to a single-subject functional magnetic resonance imaging (fMRI) study of the auditory sys...
متن کاملGraph-partitioned spatial priors for functional magnetic resonance images
Spatial models of functional magnetic resonance imaging (fMRI) data allow one to estimate the spatial smoothness of general linear model (GLM) parameters and eschew pre-process smoothing of data entailed by conventional mass-univariate analyses. Recently diffusion-based spatial priors [Harrison, L.M., Penny, W., Daunizeau, J., and Friston, K.J. (2008). Diffusion-based spatial priors for functio...
متن کاملIncorporating priors for EEG source imaging and connectivity analysis
Electroencephalography source imaging (ESI) is a useful technique to localize the generators from a given scalp electric measurement and to investigate the temporal dynamics of the large-scale neural circuits. By introducing reasonable priors from other modalities, ESI reveals the most probable sources and communication structures at every moment in time. Here, we review the available priors fr...
متن کاملGaussian Markov Random Field Priors for Inverse Problems
In this paper, our focus is on the connections between the methods of (quadratic) regularization for inverse problems and Gaussian Markov random field (GMRF) priors for problems in spatial statistics. We begin with the most standard GMRFs defined on a uniform computational grid, which correspond to the oft-used discrete negative-Laplacian regularization matrix. Next, we present a class of GMRFs...
متن کاملImage-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization.
A promising method to incorporate tissue structural information into the reconstruction of diffusion-based fluorescence imaging is introduced. The method regularizes the inversion problem with a Laplacian-type matrix, which inherently smoothes pre-defined tissue, but allows discontinuities between adjacent regions. The technique is most appropriately used when fluorescence tomography is combine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 38 شماره
صفحات -
تاریخ انتشار 2007